Filtering API Reference
This module implements filtering functionailty for core nelpy objects.
getsos(*, fs, fl=None, fh=None, bandstop=False, gpass=None, gstop=None, ftype='cheby2')
Return second-order sections representation of the IIR filter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fs | float | The sampling frequency (Hz). | required |
fl | float | Lower cut-off frequency (in Hz), 0 or None to ignore. Default is None. | None |
fh | float | Upper cut-off frequency (in Hz), 0 or None to ignore. Default is None. | None |
bandstop | boolean | If False, passband is between fl and fh. If True, stopband is between fl and fh. Default is False. | False |
gpass | float | The maximum loss in the passband (dB). Default is 0.1 dB. | None |
gstop | float | The minimum attenuation in the stopband (dB). Default is 30 dB. | None |
ftype | str | The type of IIR filter to design: - Butterworth : 'butter' - Chebyshev I : 'cheby1' - Chebyshev II : 'cheby2' (Default) - Cauer/elliptic: 'ellip' - Bessel/Thomson: 'bessel' | 'cheby2' |
Returns:
Name | Type | Description |
---|---|---|
sos | ndarray | Second-order sections representation of the IIR filter. |
Examples:
>>> import matplotlib.pyplot as plt
>>> from scipy import signal
>>>
>>> sos = getsos(...)
>>> w, h = signal.sosfreqz(sos, worN=1500)
>>> db = 20 * np.log10(np.abs(h))
>>> freq = w * fs / (2 * np.pi)
>>> plt.subplot(2, 1, 1)
>>> plt.ylabel("Gain [dB]")
>>> plt.plot(freq, db)
>>> plt.subplot(2, 1, 2)
>>> plt.plot(freq, np.angle(h))
>>> plt.ylabel("Phase [rad]")
Although not currently supported, filters can be stacked as well, as follows:
>>> sos = np.vstack((nel.filtering.getsos(fs=T2.fs, fl=150, fh=250, gstop=10, ftype='cheby2'),
nel.filtering.getsos(fs=T2.fs, fl=150, fh=250, gstop=10, ftype='cheby2'),
nel.filtering.getsos(fs=T2.fs, fl=150, fh=250, gstop=10, ftype='cheby2'),
nel.filtering.getsos(fs=T2.fs, fl=150, fh=250, gstop=1, ftype='butter')))
Source code in nelpy/filtering.py
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
|
sosfiltfilt(timeseries, *, fl=None, fh=None, fs=None, inplace=False, bandstop=False, gpass=None, gstop=None, ftype=None, buffer_len=None, overlap_len=None, parallel=True, **kwargs)
Apply a zero-phase digital filter using second-order sections.
This function applies a forward and backward digital filter to a signal using second-order sections (SOS) representation. The result has zero phase distortion and the same shape as the input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
timeseries | nelpy.RegularlySampledAnalogSignalArray (preferred), ndarray, or list | Object or data to filter. Can be a NumPy array or a Nelpy AnalogSignalArray. | required |
fs | float, optional only if RegularlySampledAnalogSignalArray is passed | The sampling frequency (Hz). Obtained from the input timeseries. | None |
fl | float | Lower cut-off frequency (in Hz), 0 or None to ignore. Default is None. | None |
fh | float | Upper cut-off frequency (in Hz), np.inf or None to ignore. Default is None. | None |
bandstop | boolean | If False, passband is between fl and fh. If True, stopband is between fl and fh. Default is False. | False |
gpass | float | The maximum loss in the passband (dB). Default is 0.1 dB. | None |
gstop | float | The minimum attenuation in the stopband (dB). Default is 30 dB. | None |
ftype | str | The type of IIR filter to design: - Butterworth : 'butter' - Chebyshev I : 'cheby1' - Chebyshev II : 'cheby2' (Default) - Cauer/elliptic: 'ellip' - Bessel/Thomson: 'bessel' | None |
buffer_len | int | How much data to process at a time. Default is 2**22 = 4194304 samples. | None |
overlap_len | int | How much data we add to the end of each chunk to smooth out filter transients. | None |
inplace | bool | If True, modifies the input in place. Default is False. | False |
parallel | bool | If True, uses multiprocessing for parallel filtering. Default is True. | True |
kwargs | optional | Other keyword arguments are passed to scipy.signal's iirdesign method | {} |
Returns:
Name | Type | Description |
---|---|---|
out | nelpy.RegularlySampledAnalogSignalArray, ndarray, or list | Same output type as input timeseries. |
WARNING | The data type of the output object is the same as that of the input. | |
Thus it is highly recommended to have your input data be floats before calling | | |
this function. If the input is an RSASA, you do not need to worry because | | |
the underlying data are already floats. | |
See Also
scipy.signal.sosfilt : Apply a digital filter forward in time. scipy.signal.filtfilt : Zero-phase filtering for transfer function and FIR filters.
Notes
This function is similar to scipy.signal.filtfilt
, but uses the second-order sections (SOS) representation for improved numerical stability, especially for high-order filters.
Examples:
Filter a noisy sine wave (NumPy array):
>>> import numpy as np
>>> from scipy.signal import butter
>>> from nelpy.filtering import sosfiltfilt
>>> np.random.seed(0)
>>> t = np.linspace(0, 1, 1000, endpoint=False)
>>> x = np.sin(2 * np.pi * 5 * t) + 0.5 * np.random.randn(t.size)
>>> sos = butter(4, 10, "low", fs=1000, output="sos")
>>> y = sosfiltfilt(x, fs=1000, fl=None, fh=10)
>>> import matplotlib.pyplot as plt
>>> plt.plot(t, x, label="Noisy signal")
>>> plt.plot(t, y, label="Filtered signal")
>>> plt.legend()
>>> plt.show()
Filter a Nelpy AnalogSignalArray:
>>> from nelpy import AnalogSignalArray
>>> # Create a 2-channel signal
>>> data = np.vstack([np.sin(2 * np.pi * 5 * t), np.cos(2 * np.pi * 5 * t)])
>>> asa = AnalogSignalArray(data=data, abscissa_vals=t, fs=1000)
>>> filtered_asa = sosfiltfilt(asa, fl=None, fh=10)
>>> print(filtered_asa.data.shape)
(2, 1000)
>>> # Plot the first channel
>>> plt.plot(t, asa.data[0], label="Original")
>>> plt.plot(t, filtered_asa.data[0], label="Filtered")
>>> plt.legend()
>>> plt.show()
Source code in nelpy/filtering.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
|