IntervalArray
EpochArray
Bases: IntervalArray
IntervalArray containing temporal intervals (epochs, in seconds).
This class extends IntervalArray
to specifically handle time-based intervals, referred to as epochs. It provides aliases for common time-related attributes and uses a PrettyDuration
formatter for displaying lengths.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | array | If shape (n_epochs, 1) or (n_epochs,), the start time for each epoch (which then requires a | required |
length | np.array, float, or None | The duration of the epoch (in base units, seconds). If a float, the same duration is assumed for every epoch. Only used if | required |
meta | dict | Metadata associated with the epoch array. | required |
empty | bool | If True, an empty | required |
domain | IntervalArray | The domain within which the epochs are defined. If None, it defaults to an infinite domain. | required |
label | str | A descriptive label for the epoch array. | required |
Attributes:
Name | Type | Description |
---|---|---|
time | array | Alias for |
n_epochs | int | Alias for |
duration | float | Alias for |
durations | array | Alias for |
formatter | PrettyDuration | The formatter used for displaying time durations. |
base_unit | str | The base unit of the intervals, which is 's' (seconds) for EpochArray. |
Notes
This class inherits all methods and properties from IntervalArray
. Aliases are provided for convenience to make the API more intuitive for temporal data.
Examples:
>>> import numpy as np
>>> from nelpy.core import EpochArray
>>> # Create an EpochArray from start and stop times
>>> epochs = EpochArray(data=np.array([[0, 10], [20, 30], [40, 50]]))
>>> print(epochs)
<EpochArray at 0x21b641f0950: 3 epochs> of length 30 seconds
>>> # Create an EpochArray from start times and a common length
>>> starts = np.array([0, 20, 40])
>>> length = 5.0
>>> epochs_with_length = EpochArray(data=starts, length=length)
>>> print(epochs_with_length)
<EpochArray at 0x21b631c6050: 3 epochs> of length 15 seconds
>>> # Accessing aliased attributes
>>> print(f"Number of epochs: {epochs.n_epochs}")
Number of epochs: 3
>>> print(f"Total duration: {epochs.duration}")
Total duration: 30 seconds
>>> print(f"Individual durations: {epochs.durations}")
Individual durations: [10 10 10]
Source code in nelpy/core/_intervalarray.py
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 |
|
IntervalArray
An array of intervals, where each interval has a start and stop.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | array | If shape (n_intervals, 1) or (n_intervals,), the start value for each interval (which then requires a length to be specified). If shape (n_intervals, 2), the start and stop values for each interval. | None |
length | np.array, float, or None | The length of the interval (in base units). If (float) then the same length is assumed for every interval. | None |
meta | dict | Metadata associated with spiketrain. | None |
domain | IntervalArray ??? This is pretty meta @-@ | | None |
Attributes:
Name | Type | Description |
---|---|---|
data | array | The start and stop values for each interval. With shape (n_intervals, 2). |
Source code in nelpy/core/_intervalarray.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 |
|
centers
property
(np.array) The center of each interval.
data
property
Interval values [start, stop) in base units.
domain
property
writable
domain (in base units) within which support is defined
is_finite
property
Is the interval [start, stop) finite.
isempty
property
(bool) Empty IntervalArray.
ismerged
property
(bool) No overlapping intervals exist.
issorted
property
(bool) Left edges of intervals are sorted in ascending order.
label
property
writable
Label describing the interval array.
length
property
(float) The total length of the [merged] interval array.
lengths
property
(np.array) The length of each interval.
max
property
Maximum bound of all intervals in IntervalArray.
meta
property
writable
Meta data associated with IntervalArray.
min
property
Minimum bound of all intervals in IntervalArray.
n_intervals
property
(int) The number of intervals.
range
property
return IntervalArray containing range of current IntervalArray.
start
property
(np.array) The start of the first interval.
starts
property
(np.array) The start of each interval.
stop
property
(np.array) The stop of the last interval.
stops
property
(np.array) The stop of each interval.
complement(domain=None)
Complement within domain.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
domain | IntervalArray | IntervalArray specifying entire domain. Default is self.domain. | None |
Returns:
Name | Type | Description |
---|---|---|
complement | IntervalArray | IntervalArray containing all the nonzero intervals in the complement set. |
Source code in nelpy/core/_intervalarray.py
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
|
copy()
(IntervalArray) Returns a copy of the current interval array.
Source code in nelpy/core/_intervalarray.py
653 654 655 656 |
|
expand(amount, direction='both')
Expands interval by the given amount.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
amount | float | Amount (in base units) to expand each interval. | required |
direction | str | Can be 'both', 'start', or 'stop'. This specifies which direction to resize interval. | 'both' |
Returns:
Name | Type | Description |
---|---|---|
expanded_intervals | IntervalArray | |
Source code in nelpy/core/_intervalarray.py
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
|
intersect(interval, *, boundaries=True)
Returns intersection (overlap) between current IntervalArray (self) and other interval array ('interval').
Source code in nelpy/core/_intervalarray.py
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
|
join(interval, meta=None)
Combines [and merges] two sets of intervals. Intervals can have different sampling rates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
interval | IntervalArray | | required |
meta | dict | New meta data dictionary describing the joined intervals. | None |
Returns:
Name | Type | Description |
---|---|---|
joined_intervals | IntervalArray | |
Source code in nelpy/core/_intervalarray.py
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
|
merge(*, gap=0.0, overlap=0.0)
Merge intervals that are close or overlapping.
if gap == 0 and overlap == 0: [a, b) U [b, c) = [a, c) if gap == None and overlap > 0: [a, b) U [b, c) = [a, b) U [b, c) [a, b + overlap) U [b, c) = [a, c) [a, b) U [b - overlap, c) = [a, c) if gap > 0 and overlap == None: [a, b) U [b, c) = [a, c) [a, b) U [b + gap, c) = [a, c) [a, b - gap) U [b, c) = [a, c)
WARNING! Algorithm only works on SORTED intervals.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gap | float | Amount (in base units) to consider intervals close enough to merge. Defaults to 0.0 (no gap). | 0.0 |
Returns:
Name | Type | Description |
---|---|---|
merged_intervals | IntervalArray | |
Source code in nelpy/core/_intervalarray.py
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
|
partition(*, ds=None, n_intervals=None)
Returns an IntervalArray that has been partitioned.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ds | float | Maximum length, for each interval. | None |
n_points | int | Number of intervals. If ds is None and n_intervals is None, then default is to use n_intervals = 100 | required |
Returns:
Name | Type | Description |
---|---|---|
out | IntervalArray | IntervalArray that has been partitioned. |
Notes
Irrespective of whether 'ds' or 'n_intervals' are used, the exact underlying support is propagated, and the first and last points of the supports are always included, even if this would cause n_points or ds to be violated.
Source code in nelpy/core/_intervalarray.py
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
|
remove_duplicates(inplace=False)
Remove duplicate intervals.
Source code in nelpy/core/_intervalarray.py
347 348 349 |
|
shrink(amount, direction='both')
Shrinks interval by the given amount.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
amount | float | Amount (in base units) to shrink each interval. | required |
direction | str | Can be 'both', 'start', or 'stop'. This specifies which direction to resize interval. | 'both' |
Returns:
Name | Type | Description |
---|---|---|
shrinked_intervals | IntervalArray | |
Source code in nelpy/core/_intervalarray.py
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
|
SpaceArray
Bases: IntervalArray
IntervalArray containing spatial intervals (in centimeters).
This class extends IntervalArray
to specifically handle space-based intervals, such as linear or 2D spatial regions. It provides a formatter for displaying spatial lengths and can be used for spatial segmentation in behavioral or neural data analysis.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data | array | If shape (n_intervals, 1) or (n_intervals,), the start position for each interval (which then requires a | required |
length | np.array, float, or None | The length of the interval (in base units, centimeters). If a float, the same length is assumed for every interval. Only used if | required |
meta | dict | Metadata associated with the spatial intervals. | required |
empty | bool | If True, an empty | required |
domain | IntervalArray | The domain within which the spatial intervals are defined. If None, it defaults to an infinite domain. | required |
label | str | A descriptive label for the space array. | required |
Attributes:
Name | Type | Description |
---|---|---|
data | array | The start and stop positions for each interval, with shape (n_intervals, 2). |
n_intervals | int | The number of spatial intervals in the array. |
lengths | array | The length of each spatial interval (in centimeters). |
formatter | PrettySpace | The formatter used for displaying spatial lengths. |
base_unit | str | The base unit of the intervals, which is 'cm' for SpaceArray. |
Notes
This class inherits all methods and properties from IntervalArray
. It is intended for use with spatial data, such as segmenting a linear track or defining regions of interest in a behavioral arena.
Examples:
>>> import numpy as np
>>> from nelpy.core import SpaceArray
>>> # Create a SpaceArray from start and stop positions
>>> regions = SpaceArray(data=np.array([[0, 50], [100, 150]]))
>>> print(regions)
<SpaceArray at 0x...: 2 intervals> of length 100 cm
>>> # Create a SpaceArray from start positions and a common length
>>> starts = np.array([0, 100])
>>> length = 25.0
>>> regions_with_length = SpaceArray(data=starts, length=length)
>>> print(regions_with_length)
<SpaceArray at 0x...: 2 intervals> of length 50 cm
>>> # Accessing attributes
>>> print(f"Number of regions: {regions.n_intervals}")
Number of regions: 2
>>> print(f"Lengths: {regions.lengths}")
Lengths: [50 50]
Source code in nelpy/core/_intervalarray.py
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 |
|