Skip to content

IntervalArray

EpochArray

Bases: IntervalArray

IntervalArray containing temporal intervals (epochs, in seconds).

This class extends IntervalArray to specifically handle time-based intervals, referred to as epochs. It provides aliases for common time-related attributes and uses a PrettyDuration formatter for displaying lengths.

Parameters:

Name Type Description Default
data array

If shape (n_epochs, 1) or (n_epochs,), the start time for each epoch (which then requires a length to be specified). If shape (n_epochs, 2), the start and stop times for each epoch. Defaults to None, creating an empty EpochArray.

required
length np.array, float, or None

The duration of the epoch (in base units, seconds). If a float, the same duration is assumed for every epoch. Only used if data is a 1D array of start times.

required
meta dict

Metadata associated with the epoch array.

required
empty bool

If True, an empty EpochArray is returned, ignoring data and length. Defaults to False.

required
domain IntervalArray

The domain within which the epochs are defined. If None, it defaults to an infinite domain.

required
label str

A descriptive label for the epoch array.

required

Attributes:

Name Type Description
time array

Alias for data. The start and stop times for each epoch, with shape (n_epochs, 2).

n_epochs int

Alias for n_intervals. The number of epochs in the array.

duration float

Alias for length. The total duration of the [merged] epoch array.

durations array

Alias for lengths. The duration of each individual epoch.

formatter PrettyDuration

The formatter used for displaying time durations.

base_unit str

The base unit of the intervals, which is 's' (seconds) for EpochArray.

Notes

This class inherits all methods and properties from IntervalArray. Aliases are provided for convenience to make the API more intuitive for temporal data.

Examples:

>>> import numpy as np
>>> from nelpy.core import EpochArray
>>> # Create an EpochArray from start and stop times
>>> epochs = EpochArray(data=np.array([[0, 10], [20, 30], [40, 50]]))
>>> print(epochs)
<EpochArray at 0x21b641f0950: 3 epochs> of length 30 seconds
>>> # Create an EpochArray from start times and a common length
>>> starts = np.array([0, 20, 40])
>>> length = 5.0
>>> epochs_with_length = EpochArray(data=starts, length=length)
>>> print(epochs_with_length)
<EpochArray at 0x21b631c6050: 3 epochs> of length 15 seconds
>>> # Accessing aliased attributes
>>> print(f"Number of epochs: {epochs.n_epochs}")
Number of epochs: 3
>>> print(f"Total duration: {epochs.duration}")
Total duration: 30 seconds
>>> print(f"Individual durations: {epochs.durations}")
Individual durations: [10 10 10]
Source code in nelpy/core/_intervalarray.py
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
class EpochArray(IntervalArray):
    """IntervalArray containing temporal intervals (epochs, in seconds).

    This class extends `IntervalArray` to specifically handle time-based
    intervals, referred to as epochs. It provides aliases for common
    time-related attributes and uses a `PrettyDuration` formatter for
    displaying lengths.

    Parameters
    ----------
    data : np.array, optional
        If shape (n_epochs, 1) or (n_epochs,), the start time for each
        epoch (which then requires a `length` to be specified).
        If shape (n_epochs, 2), the start and stop times for each epoch.
        Defaults to None, creating an empty `EpochArray`.
    length : np.array, float, or None, optional
        The duration of the epoch (in base units, seconds). If a float,
        the same duration is assumed for every epoch. Only used if `data`
        is a 1D array of start times.
    meta : dict, optional
        Metadata associated with the epoch array.
    empty : bool, optional
        If True, an empty `EpochArray` is returned, ignoring `data` and `length`.
        Defaults to False.
    domain : IntervalArray, optional
        The domain within which the epochs are defined. If None, it defaults
        to an infinite domain.
    label : str, optional
        A descriptive label for the epoch array.

    Attributes
    ----------
    time : np.array
        Alias for `data`. The start and stop times for each epoch, with shape
        (n_epochs, 2).
    n_epochs : int
        Alias for `n_intervals`. The number of epochs in the array.
    duration : float
        Alias for `length`. The total duration of the [merged] epoch array.
    durations : np.array
        Alias for `lengths`. The duration of each individual epoch.
    formatter : formatters.PrettyDuration
        The formatter used for displaying time durations.
    base_unit : str
        The base unit of the intervals, which is 's' (seconds) for EpochArray.

    Notes
    -----
    This class inherits all methods and properties from `IntervalArray`.
    Aliases are provided for convenience to make the API more intuitive
    for temporal data.

    Examples
    --------
    >>> import numpy as np
    >>> from nelpy.core import EpochArray

    >>> # Create an EpochArray from start and stop times
    >>> epochs = EpochArray(data=np.array([[0, 10], [20, 30], [40, 50]]))
    >>> print(epochs)
    <EpochArray at 0x21b641f0950: 3 epochs> of length 30 seconds

    >>> # Create an EpochArray from start times and a common length
    >>> starts = np.array([0, 20, 40])
    >>> length = 5.0
    >>> epochs_with_length = EpochArray(data=starts, length=length)
    >>> print(epochs_with_length)
    <EpochArray at 0x21b631c6050: 3 epochs> of length 15 seconds

    >>> # Accessing aliased attributes
    >>> print(f"Number of epochs: {epochs.n_epochs}")
    Number of epochs: 3
    >>> print(f"Total duration: {epochs.duration}")
    Total duration: 30 seconds
    >>> print(f"Individual durations: {epochs.durations}")
    Individual durations: [10 10 10]
    """

    __aliases__ = {
        "time": "data",
        "_time": "_data",
        "n_epochs": "n_intervals",
        "duration": "length",
        "durations": "lengths",
    }

    def __init__(self, *args, **kwargs):
        # add class-specific aliases to existing aliases:
        self.__aliases__ = {**super().__aliases__, **self.__aliases__}
        super().__init__(*args, **kwargs)

        self._interval_label = "epoch"
        self.formatter = formatters.PrettyDuration
        self.base_unit = self.formatter.base_unit

IntervalArray

An array of intervals, where each interval has a start and stop.

Parameters:

Name Type Description Default
data array

If shape (n_intervals, 1) or (n_intervals,), the start value for each interval (which then requires a length to be specified). If shape (n_intervals, 2), the start and stop values for each interval.

None
length np.array, float, or None

The length of the interval (in base units). If (float) then the same length is assumed for every interval.

None
meta dict

Metadata associated with spiketrain.

None
domain IntervalArray ??? This is pretty meta @-@
None

Attributes:

Name Type Description
data array

The start and stop values for each interval. With shape (n_intervals, 2).

Source code in nelpy/core/_intervalarray.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
class IntervalArray:
    """An array of intervals, where each interval has a start and stop.

    Parameters
    ----------
    data : np.array
        If shape (n_intervals, 1) or (n_intervals,), the start value for each
        interval (which then requires a length to be specified).
        If shape (n_intervals, 2), the start and stop values for each interval.
    length : np.array, float, or None, optional
        The length of the interval (in base units). If (float) then the same
        length is assumed for every interval.
    meta : dict, optional
        Metadata associated with spiketrain.
    domain : IntervalArray ??? This is pretty meta @-@

    Attributes
    ----------
    data : np.array
        The start and stop values for each interval. With shape (n_intervals, 2).
    """

    __aliases__ = {}
    __attributes__ = ["_data", "_meta", "_domain"]

    def __init__(
        self,
        data=None,
        *args,
        length=None,
        meta=None,
        empty=False,
        domain=None,
        label=None,
    ):
        self.__version__ = version.__version__

        self.type_name = self.__class__.__name__
        self._interval_label = "interval"
        self.formatter = formatters.ArbitraryFormatter
        self.base_unit = self.formatter.base_unit

        if len(args) > 1:
            raise TypeError(
                "__init__() takes from 1 to 3 positional arguments but 4 were given"
            )
        elif len(args) == 1:
            data = [data, args[0]]

        # if an empty object is requested, return it:
        if empty:
            for attr in self.__attributes__:
                exec("self." + attr + " = None")
            return

        data = np.squeeze(data)  # coerce data into np.array

        # all possible inputs:
        # 1. single interval, no length    --- OK
        # 2. single interval and length    --- ERR
        # 3. multiple intervals, no length --- OK
        # 4. multiple intervals and length --- ERR
        # 5. single scalar and length   --- OK
        # 6. scalar list and duratin list --- OK
        #
        # Q. won't np.squeeze make our life difficult?
        #
        # Strategy: determine if length was passed. If so, try to see
        # if data can be coerced into right shape. If not, raise
        # error.
        # If length was NOT passed, then do usual checks for intervals.

        if length is not None:  # assume we received scalar starts
            data = np.array(data, ndmin=1)
            length = np.squeeze(length).astype(float)
            if length.ndim == 0:
                length = length[..., np.newaxis]

            if data.ndim == 2 and length.ndim == 1:
                raise ValueError("length not allowed when using start and stop values")

            if len(length) > 1:
                if data.ndim == 1 and data.shape[0] != length.shape[0]:
                    raise ValueError("must have same number of data and length data")
            if data.ndim == 1 and length.ndim == 1:
                stop_interval = data + length
                data = np.hstack(
                    (data[..., np.newaxis], stop_interval[..., np.newaxis])
                )
        else:  # length was not specified, so assume we recived intervals
            # Note: if we have an empty array of data with no
            # dimension, then calling len(data) will return a
            # TypeError.
            try:
                # if no data were received, return an empty IntervalArray:
                if len(data) == 0:
                    self.__init__(empty=True)
                    return
            except TypeError:
                logging.warning(
                    "unsupported type ("
                    + str(type(data))
                    + "); creating empty {}".format(self.type_name)
                )
                self.__init__(empty=True)
                return

            # Only one interval is given eg IntervalArray([3,5,6,10]) with no
            # length and more than two values:
            if data.ndim == 1 and len(data) > 2:  # we already know length is None
                raise TypeError(
                    "data of size (n_intervals, ) has to be accompanied by a length"
                )

            if data.ndim == 1:  # and length is None:
                data = np.array([data])

        if data.ndim > 2:
            raise ValueError("data must be a 1D or a 2D vector")

        try:
            if data[:, 0].shape[0] != data[:, 1].shape[0]:
                raise ValueError("must have the same number of start and stop values")
        except Exception:
            raise Exception("Unhandled {}.__init__ case.".format(self.type_name))

        # TODO: what if start == stop? what will this break? This situation
        # can arise automatically when slicing a spike train with one or no
        # spikes, for example in which case the automatically inferred support
        # is a delta dirac

        if data.ndim == 2 and np.any(data[:, 1] - data[:, 0] < 0):
            raise ValueError("start must be less than or equal to stop")

        # potentially assign domain
        self._domain = domain

        self._data = data
        self._meta = meta
        self.label = label

        if not self.issorted:
            self._sort()

    def __repr__(self):
        address_str = " at " + str(hex(id(self)))
        if self.isempty:
            return "<empty " + self.type_name + address_str + ">"
        if self.n_intervals > 1:
            nstr = "%s %ss" % (self.n_intervals, self._interval_label)
        else:
            nstr = "1 %s" % self._interval_label
        dstr = "of length {}".format(self.formatter(self.length))
        return "<%s%s: %s> %s" % (self.type_name, address_str, nstr, dstr)

    def __setattr__(self, name, value):
        # https://stackoverflow.com/questions/4017572/how-can-i-make-an-alias-to-a-non-function-member-attribute-in-a-python-class
        name = self.__aliases__.get(name, name)
        object.__setattr__(self, name, value)

    def __getattr__(self, name):
        # https://stackoverflow.com/questions/4017572/how-can-i-make-an-alias-to-a-non-function-member-attribute-in-a-python-class
        if name == "aliases":
            raise AttributeError  # http://nedbatchelder.com/blog/201010/surprising_getattr_recursion.html
        name = self.__aliases__.get(name, name)
        # return getattr(self, name) #Causes infinite recursion on non-existent attribute
        return object.__getattribute__(self, name)

    def _copy_without_data(self):
        """Return a copy of self, without data."""
        out = copy.copy(self)  # shallow copy
        out._data = np.zeros((self.n_intervals, 2))
        out = copy.deepcopy(
            out
        )  # just to be on the safe side, but at least now we are not copying the data!
        return out

    def __iter__(self):
        """IntervalArray iterator initialization."""
        # initialize the internal index to zero when used as iterator
        self._index = 0
        return self

    def __next__(self):
        """IntervalArray iterator advancer."""
        index = self._index
        if index > self.n_intervals - 1:
            raise StopIteration

        intervalarray = self._copy_without_data()
        intervalarray._data = np.array([self.data[index, :]])
        self._index += 1
        return intervalarray

    def __getitem__(self, *idx):
        """IntervalArray index access.

        Accepts integers, slices, and IntervalArrays.
        """
        if self.isempty:
            return self

        idx = [ii for ii in idx]
        if len(idx) == 1 and not isinstance(idx[0], int):
            idx = idx[0]
        if isinstance(idx, tuple):
            idx = [ii for ii in idx]

        if isinstance(idx, type(self)):
            if idx.isempty:  # case 0:
                return type(self)(empty=True)
            return self.intersect(interval=idx)
        elif isinstance(idx, IntervalArray):
            raise TypeError(
                "Error taking intersection. {} expected, but got {}".format(
                    self.type_name, idx.type_name
                )
            )
        else:
            try:  # works for ints, lists, and slices
                out = self.copy()
                out._data = self.data[idx, :]
            except IndexError:
                raise IndexError("{} index out of range".format(self.type_name))
            except Exception:
                raise TypeError("unsupported subscripting type {}".format(type(idx)))
        return out

    def __add__(self, other):
        """add length to start and stop of each interval, or join two interval arrays without merging"""
        if isinstance(other, numbers.Number):
            new = copy.copy(self)
            return new.expand(other, direction="both")
        elif isinstance(other, type(self)):
            return self.join(other)
        else:
            raise TypeError(
                "unsupported operand type(s) for +: {} and {}".format(
                    str(type(self)), str(type(other))
                )
            )

    def __sub__(self, other):
        """subtract length from start and stop of each interval"""
        if isinstance(other, numbers.Number):
            new = copy.copy(self)
            return new.shrink(other, direction="both")
        elif isinstance(other, type(self)):
            # A - B = A intersect ~B
            return self.intersect(~other)
        else:
            raise TypeError(
                "unsupported operand type(s) for +: {} and {}".format(
                    str(type(self)), str(type(other))
                )
            )

    def __mul__(self, other):
        """expand (>1) or shrink (<1) interval lengths"""
        raise NotImplementedError("operator * not yet implemented")

    def __truediv__(self, other):
        """expand (>1) or shrink (>1) interval lengths"""
        raise NotImplementedError("operator / not yet implemented")

    def __lshift__(self, other):
        """shift data to left (<<)"""
        if isinstance(other, numbers.Number):
            new = copy.copy(self)
            new._data = new._data - other
            if new.domain.is_finite:
                new.domain._data = new.domain._data - other
            return new
        else:
            raise TypeError(
                "unsupported operand type(s) for <<: {} and {}".format(
                    str(type(self)), str(type(other))
                )
            )

    def __rshift__(self, other):
        """shift data to right (>>)"""
        if isinstance(other, numbers.Number):
            new = copy.copy(self)
            new._data = new._data + other
            if new.domain.is_finite:
                new.domain._data = new.domain._data + other
            return new
        else:
            raise TypeError(
                "unsupported operand type(s) for >>: {} and {}".format(
                    str(type(self)), str(type(other))
                )
            )

    def __and__(self, other):
        """intersection of interval arrays"""
        if isinstance(other, type(self)):
            new = copy.copy(self)
            return new.intersect(other, boundaries=True)
        else:
            raise TypeError(
                "unsupported operand type(s) for &: {} and {}".format(
                    str(type(self)), str(type(other))
                )
            )

    def __or__(self, other):
        """join and merge interval array; set union"""
        if isinstance(other, type(self)):
            new = copy.copy(self)
            joined = new.join(other)
            union = joined.merge()
            return union
        else:
            raise TypeError(
                "unsupported operand type(s) for |: {} and {}".format(
                    str(type(self)), str(type(other))
                )
            )

    def __invert__(self):
        """complement within self.domain"""
        return self.complement()

    def __bool__(self):
        """(bool) Empty IntervalArray"""
        return not self.isempty

    def remove_duplicates(self, inplace=False):
        """Remove duplicate intervals."""
        raise NotImplementedError

    @keyword_equivalence(this_or_that={"n_intervals": "n_epochs"})
    def partition(self, *, ds=None, n_intervals=None):
        """Returns an IntervalArray that has been partitioned.

        Parameters
        ----------
        ds : float, optional
            Maximum length, for each interval.
        n_points : int, optional
            Number of intervals. If ds is None and n_intervals is None, then
            default is to use n_intervals = 100

        Returns
        -------
        out : IntervalArray
            IntervalArray that has been partitioned.

        Notes
        -----
        Irrespective of whether 'ds' or 'n_intervals' are used, the exact
        underlying support is propagated, and the first and last points
        of the supports are always included, even if this would cause
        n_points or ds to be violated.
        """

        if self.isempty:
            raise ValueError("cannot parition an empty object in a meaningful way!")

        if ds is not None and n_intervals is not None:
            raise ValueError("ds and n_intervals cannot be used together")

        if n_intervals is not None:
            assert float(n_intervals).is_integer(), (
                "n_intervals must be a positive integer!"
            )
            assert n_intervals > 1, "n_intervals must be a positive integer > 1"
            # determine ds from number of desired points:
            ds = self.length / n_intervals

        if ds is None:
            # neither n_intervals nor ds was specified, so assume defaults:
            n_intervals = 100
            ds = self.length / n_intervals

        # build list of points at which to esplit the IntervalArray
        new_starts = []
        new_stops = []
        for start, stop in self.data:
            newxvals = utils.frange(start, stop, step=ds).tolist()
            # newxvals = np.arange(start, stop, step=ds).tolist()
            if newxvals[-1] + float_info.epsilon < stop:
                newxvals.append(stop)
            newxvals = np.asanyarray(newxvals)
            new_starts.extend(newxvals[:-1])
            new_stops.extend(newxvals[1:])

        # now make a new interval array:
        out = copy.copy(self)
        out._data = np.hstack(
            [
                np.array(new_starts)[..., np.newaxis],
                np.array(new_stops)[..., np.newaxis],
            ]
        )
        return out

    @property
    def label(self):
        """Label describing the interval array."""
        if self._label is None:
            logging.warning("label has not yet been specified")
        return self._label

    @label.setter
    def label(self, val):
        if val is not None:
            try:  # cast to str:
                label = str(val)
            except TypeError:
                raise TypeError("cannot convert label to string")
        else:
            label = val
        self._label = label

    def complement(self, domain=None):
        """Complement within domain.

        Parameters
        ----------
        domain : IntervalArray, optional
            IntervalArray specifying entire domain. Default is self.domain.

        Returns
        -------
        complement : IntervalArray
            IntervalArray containing all the nonzero intervals in the
            complement set.
        """

        if domain is None:
            domain = self.domain

        # make sure IntervalArray is sorted:
        if not self.issorted:
            self._sort()
        # check that IntervalArray is entirely contained within domain
        # if (self.start < domain.start) or (self.stop > domain.stop):
        #     raise ValueError("IntervalArray must be entirely contained within domain")

        # check that IntervalArray is fully merged, or merge it if necessary
        merged = self.merge()
        # build complement intervals
        starts = np.insert(merged.stops, 0, domain.start)
        stops = np.append(merged.starts, domain.stop)
        newvalues = np.vstack([starts, stops]).T
        # remove intervals with zero length
        lengths = newvalues[:, 1] - newvalues[:, 0]
        newvalues = newvalues[lengths > 0]
        complement = copy.copy(self)
        complement._data = newvalues

        if domain.n_intervals > 1:
            return complement[domain]
        try:
            complement._data[0, 0] = np.max((complement._data[0, 0], domain.start))
            complement._data[-1, -1] = np.min((complement._data[-1, -1], domain.stop))
        except IndexError:  # complement is empty
            return type(self)(empty=True)
        return complement

    @property
    def domain(self):
        """domain (in base units) within which support is defined"""
        if self._domain is None:
            self._domain = type(self)([-np.inf, np.inf])
        return self._domain

    @domain.setter
    def domain(self, val):
        """domain (in base units) within which support is defined"""
        # TODO: add  input validation
        if isinstance(val, type(self)):
            self._domain = val
        elif isinstance(val, (tuple, list)):
            self._domain = type(self)([val[0], val[1]])

    @property
    def meta(self):
        """Meta data associated with IntervalArray."""
        if self._meta is None:
            logging.warning("meta data is not available")
        return self._meta

    @meta.setter
    def meta(self, val):
        self._meta = val

    @property
    def min(self):
        """Minimum bound of all intervals in IntervalArray."""
        return self.merge().start

    @property
    def max(self):
        """Maximum bound of all intervals in IntervalArray."""
        return self.merge().stop

    @property
    def data(self):
        """Interval values [start, stop) in base units."""
        return self._data

    @property
    def is_finite(self):
        """Is the interval [start, stop) finite."""
        return not (np.isinf(self.start) | np.isinf(self.stop))

    # @property
    # def _human_readable_posix_intervals(self):
    #     """Interval start and stop values in human readable POSIX time.

    #     This property is left private, because it has not been carefully
    #     vetted for public API release yet.
    #     """
    #     import datetime
    #     n_intervals_zfill = len(str(self.n_intervals))
    #     for ii, (start, stop) in enumerate(self.time):
    #         print('[ep ' + str(ii).zfill(n_intervals_zfill) + ']\t' +
    #               datetime.datetime.fromtimestamp(
    #                 int(start)).strftime('%Y-%m-%d %H:%M:%S') + ' -- ' +
    #               datetime.datetime.fromtimestamp(
    #                 int(stop)).strftime('%Y-%m-%d %H:%M:%S') + '\t(' +
    #               str(utils.PrettyDuration(stop-start)) + ')')

    @property
    def centers(self):
        """(np.array) The center of each interval."""
        if self.isempty:
            return []
        return np.mean(self.data, axis=1)

    @property
    def lengths(self):
        """(np.array) The length of each interval."""
        if self.isempty:
            return 0
        return self.data[:, 1] - self.data[:, 0]

    @property
    def range(self):
        """return IntervalArray containing range of current IntervalArray."""
        return type(self)([self.start, self.stop])

    @property
    def length(self):
        """(float) The total length of the [merged] interval array."""
        if self.isempty:
            return self.formatter(0)
        merged = self.merge()
        return self.formatter(np.array(merged.data[:, 1] - merged.data[:, 0]).sum())

    @property
    def starts(self):
        """(np.array) The start of each interval."""
        if self.isempty:
            return []
        return self.data[:, 0]

    @property
    def start(self):
        """(np.array) The start of the first interval."""
        if self.isempty:
            return []
        return self.data[:, 0][0]

    @property
    def stops(self):
        """(np.array) The stop of each interval."""
        if self.isempty:
            return []
        return self.data[:, 1]

    @property
    def stop(self):
        """(np.array) The stop of the last interval."""
        if self.isempty:
            return []
        return self.data[:, 1][-1]

    @property
    def n_intervals(self):
        """(int) The number of intervals."""
        if self.isempty:
            return 0
        return utils.PrettyInt(len(self.data[:, 0]))

    def __len__(self):
        """(int) The number of intervals."""
        return self.n_intervals

    @property
    def ismerged(self):
        """(bool) No overlapping intervals exist."""
        if self.isempty:
            return True
        if self.n_intervals == 1:
            return True
        if not self.issorted:
            self._sort()
        if not utils.is_sorted(self.stops):
            return False

        return np.all(self.data[1:, 0] - self.data[:-1, 1] > 0)

    def _ismerged(self, overlap=0.0):
        """(bool) No overlapping intervals with overlap >= overlap exist."""
        if self.isempty:
            return True
        if self.n_intervals == 1:
            return True
        if not self.issorted:
            self._sort()
        if not utils.is_sorted(self.stops):
            return False

        return np.all(self.data[1:, 0] - self.data[:-1, 1] > -overlap)

    @property
    def issorted(self):
        """(bool) Left edges of intervals are sorted in ascending order."""
        if self.isempty:
            return True
        return utils.is_sorted(self.starts)

    @property
    def isempty(self):
        """(bool) Empty IntervalArray."""
        try:
            return len(self.data) == 0
        except TypeError:
            return True  # this happens when self.data is None

    def copy(self):
        """(IntervalArray) Returns a copy of the current interval array."""
        newcopy = copy.deepcopy(self)
        return newcopy

    def _drop_empty_intervals(self):
        """Drops empty intervals. Not in-place, i.e. returns a copy."""
        keep_interval_ids = np.argwhere(self.lengths).squeeze().tolist()
        return self[keep_interval_ids]

    def intersect(self, interval, *, boundaries=True):
        """Returns intersection (overlap) between current IntervalArray (self) and
        other interval array ('interval').
        """

        if self.isempty or interval.isempty:
            logging.warning("interval intersection is empty")
            return type(self)(empty=True)

        new_intervals = []

        # Extract starts and stops and convert to np.array of float64 (for numba)
        interval_starts_a = np.array(self.starts, dtype=np.float64)
        interval_stops_a = np.array(self.stops, dtype=np.float64)
        if interval.data.ndim == 1:
            interval_starts_b = np.array([interval.data[0]], dtype=np.float64)
            interval_stops_b = np.array([interval.data[1]], dtype=np.float64)
        else:
            interval_starts_b = np.array(interval.data[:, 0], dtype=np.float64)
            interval_stops_b = np.array(interval.data[:, 1], dtype=np.float64)

        new_starts, new_stops = interval_intersect(
            interval_starts_a,
            interval_stops_a,
            interval_starts_b,
            interval_stops_b,
            boundaries,
        )

        for start, stop in zip(new_starts, new_stops):
            new_intervals.append([start, stop])

        # convert to np.array of float64
        new_intervals = np.array(new_intervals, dtype=np.float64)

        out = type(self)(new_intervals)
        out._domain = self.domain
        return out

    # def intersect(self, interval, *, boundaries=True):
    #     """Returns intersection (overlap) between current IntervalArray (self) and
    #        other interval array ('interval').
    #     """

    #     this = copy.deepcopy(self)
    #     new_intervals = []
    #     for epa in this:
    #         cand_ep_idx = np.argwhere((interval.starts < epa.stop) & (interval.stops > epa.start)).squeeze()
    #         if np.size(cand_ep_idx) > 0:
    #             for epb in interval[cand_ep_idx.tolist()]:
    #                 new_interval = self._intersect(epa, epb, boundaries=boundaries)
    #                 if not new_interval.isempty:
    #                     new_intervals.append([new_interval.start, new_interval.stop])
    #     out = type(self)(new_intervals)
    #     out._domain = self.domain
    #     return out

    # def _intersect(self, intervala, intervalb, *, boundaries=True, meta=None):
    #     """Finds intersection (overlap) between two sets of interval arrays.

    #     TODO: verify if this requires a merged IntervalArray to work properly?
    #     ISSUE_261: not fixed yet

    #     TODO: domains are not preserved yet! careful consideration is necessary.

    #     Parameters
    #     ----------
    #     interval : nelpy.IntervalArray
    #     boundaries : bool
    #         If True, limits start, stop to interval start and stop.
    #     meta : dict, optional
    #         New dictionary of meta data for interval ontersection.

    #     Returns
    #     -------
    #     intersect_intervals : nelpy.IntervalArray
    #     """
    #     if intervala.isempty or intervalb.isempty:
    #         logging.warning('interval intersection is empty')
    #         return type(self)(empty=True)

    #     new_starts = []
    #     new_stops = []
    #     interval_a = intervala.merge().copy()
    #     interval_b = intervalb.merge().copy()

    #     for aa in interval_a.data:
    #         for bb in interval_b.data:
    #             if (aa[0] <= bb[0] < aa[1]) and (aa[0] < bb[1] <= aa[1]):
    #                 new_starts.append(bb[0])
    #                 new_stops.append(bb[1])
    #             elif (aa[0] < bb[0] < aa[1]) and (aa[0] < bb[1] > aa[1]):
    #                 new_starts.append(bb[0])
    #                 if boundaries:
    #                     new_stops.append(aa[1])
    #                 else:
    #                     new_stops.append(bb[1])
    #             elif (aa[0] > bb[0] < aa[1]) and (aa[0] < bb[1] < aa[1]):
    #                 if boundaries:
    #                     new_starts.append(aa[0])
    #                 else:
    #                     new_starts.append(bb[0])
    #                 new_stops.append(bb[1])
    #             elif (aa[0] >= bb[0] < aa[1]) and (aa[0] < bb[1] >= aa[1]):
    #                 if boundaries:
    #                     new_starts.append(aa[0])
    #                     new_stops.append(aa[1])
    #                 else:
    #                     new_starts.append(bb[0])
    #                     new_stops.append(bb[1])

    #     if not boundaries:
    #         new_starts = np.unique(new_starts)
    #         new_stops = np.unique(new_stops)

    #     interval_a._data = np.hstack(
    #         [np.array(new_starts)[..., np.newaxis],
    #             np.array(new_stops)[..., np.newaxis]])

    #     return interval_a

    def merge(self, *, gap=0.0, overlap=0.0):
        """Merge intervals that are close or overlapping.

        if gap == 0 and overlap == 0:
            [a, b) U [b, c) = [a, c)
        if gap == None and overlap > 0:
            [a, b) U [b, c) = [a, b) U [b, c)
            [a, b + overlap) U [b, c) = [a, c)
            [a, b) U [b - overlap, c) = [a, c)
        if gap > 0 and overlap == None:
            [a, b) U [b, c) = [a, c)
            [a, b) U [b + gap, c) = [a, c)
            [a, b - gap) U [b, c) = [a, c)

        WARNING! Algorithm only works on SORTED intervals.

        Parameters
        ----------
        gap : float, optional
            Amount (in base units) to consider intervals close enough to merge.
            Defaults to 0.0 (no gap).
        Returns
        -------
        merged_intervals : nelpy.IntervalArray
        """

        if gap < 0:
            raise ValueError("gap cannot be negative")
        if overlap < 0:
            raise ValueError("overlap cannot be negative")

        if self.isempty:
            return self

        if (self.ismerged) and (gap == 0.0):
            # already merged
            return self

        newintervalarray = copy.copy(self)

        if not newintervalarray.issorted:
            newintervalarray._sort()

        overlap_ = overlap

        while not newintervalarray._ismerged(overlap=overlap) or gap > 0:
            stops = newintervalarray.stops[:-1] + gap
            starts = newintervalarray.starts[1:] + overlap_
            to_merge = (stops - starts) >= 0

            new_starts = [newintervalarray.starts[0]]
            new_stops = []

            next_stop = newintervalarray.stops[0]
            for i in range(newintervalarray.data.shape[0] - 1):
                this_stop = newintervalarray.stops[i]
                next_stop = max(next_stop, this_stop)
                if not to_merge[i]:
                    new_stops.append(next_stop)
                    new_starts.append(newintervalarray.starts[i + 1])

            new_stops.append(max(newintervalarray.stops[-1], next_stop))

            new_starts = np.array(new_starts)
            new_stops = np.array(new_stops)

            newintervalarray._data = np.vstack([new_starts, new_stops]).T

            # after one pass, all the gap offsets have been added, and
            # then we just need to keep merging...
            gap = 0.0
            overlap_ = 0.0

        return newintervalarray

    def expand(self, amount, direction="both"):
        """Expands interval by the given amount.
        Parameters
        ----------
        amount : float
            Amount (in base units) to expand each interval.
        direction : str
            Can be 'both', 'start', or 'stop'. This specifies
            which direction to resize interval.
        Returns
        -------
        expanded_intervals : nelpy.IntervalArray
        """
        if direction == "both":
            resize_starts = self.data[:, 0] - amount
            resize_stops = self.data[:, 1] + amount
        elif direction == "start":
            resize_starts = self.data[:, 0] - amount
            resize_stops = self.data[:, 1]
        elif direction == "stop":
            resize_starts = self.data[:, 0]
            resize_stops = self.data[:, 1] + amount
        else:
            raise ValueError("direction must be 'both', 'start', or 'stop'")

        newintervalarray = copy.copy(self)

        newintervalarray._data = np.hstack(
            (resize_starts[..., np.newaxis], resize_stops[..., np.newaxis])
        )

        return newintervalarray

    def shrink(self, amount, direction="both"):
        """Shrinks interval by the given amount.
        Parameters
        ----------
        amount : float
            Amount (in base units) to shrink each interval.
        direction : str
            Can be 'both', 'start', or 'stop'. This specifies
            which direction to resize interval.
        Returns
        -------
        shrinked_intervals : nelpy.IntervalArray
        """
        both_limit = min(self.lengths / 2)
        if amount > both_limit and direction == "both":
            raise ValueError("shrink amount too large")

        single_limit = min(self.lengths)
        if amount > single_limit and direction != "both":
            raise ValueError("shrink amount too large")

        return self.expand(-amount, direction)

    def join(self, interval, meta=None):
        """Combines [and merges] two sets of intervals. Intervals can have
        different sampling rates.

        Parameters
        ----------
        interval : nelpy.IntervalArray
        meta : dict, optional
            New meta data dictionary describing the joined intervals.

        Returns
        -------
        joined_intervals : nelpy.IntervalArray
        """

        if self.isempty:
            return interval
        if interval.isempty:
            return self

        newintervalarray = copy.copy(self)

        join_starts = np.concatenate((self.data[:, 0], interval.data[:, 0]))
        join_stops = np.concatenate((self.data[:, 1], interval.data[:, 1]))

        newintervalarray._data = np.hstack(
            (join_starts[..., np.newaxis], join_stops[..., np.newaxis])
        )
        if not newintervalarray.issorted:
            newintervalarray._sort()
        # if not newintervalarray.ismerged:
        #     newintervalarray = newintervalarray.merge()
        return newintervalarray

    def __contains__(self, value):
        """Checks whether value is in any interval.

        #TODO: add support for when value is an IntervalArray (could be easy with intersection)

        Parameters
        ----------
        intervals: nelpy.IntervalArray
        value: float or int

        Returns
        -------
        boolean

        """
        # TODO: consider vectorizing this loop, which should increase
        # speed, but also greatly increase memory? Alternatively, if we
        # could assume something about intervals being sorted, this can
        # also be made much faster than the current O(N)
        for start, stop in zip(self.starts, self.stops):
            if start <= value <= stop:
                return True
        return False

    def _sort(self):
        """Sort intervals by interval starts"""
        sort_idx = np.argsort(self.data[:, 0])
        self._data = self._data[sort_idx]

centers property

(np.array) The center of each interval.

data property

Interval values [start, stop) in base units.

domain property writable

domain (in base units) within which support is defined

is_finite property

Is the interval [start, stop) finite.

isempty property

(bool) Empty IntervalArray.

ismerged property

(bool) No overlapping intervals exist.

issorted property

(bool) Left edges of intervals are sorted in ascending order.

label property writable

Label describing the interval array.

length property

(float) The total length of the [merged] interval array.

lengths property

(np.array) The length of each interval.

max property

Maximum bound of all intervals in IntervalArray.

meta property writable

Meta data associated with IntervalArray.

min property

Minimum bound of all intervals in IntervalArray.

n_intervals property

(int) The number of intervals.

range property

return IntervalArray containing range of current IntervalArray.

start property

(np.array) The start of the first interval.

starts property

(np.array) The start of each interval.

stop property

(np.array) The stop of the last interval.

stops property

(np.array) The stop of each interval.

complement(domain=None)

Complement within domain.

Parameters:

Name Type Description Default
domain IntervalArray

IntervalArray specifying entire domain. Default is self.domain.

None

Returns:

Name Type Description
complement IntervalArray

IntervalArray containing all the nonzero intervals in the complement set.

Source code in nelpy/core/_intervalarray.py
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def complement(self, domain=None):
    """Complement within domain.

    Parameters
    ----------
    domain : IntervalArray, optional
        IntervalArray specifying entire domain. Default is self.domain.

    Returns
    -------
    complement : IntervalArray
        IntervalArray containing all the nonzero intervals in the
        complement set.
    """

    if domain is None:
        domain = self.domain

    # make sure IntervalArray is sorted:
    if not self.issorted:
        self._sort()
    # check that IntervalArray is entirely contained within domain
    # if (self.start < domain.start) or (self.stop > domain.stop):
    #     raise ValueError("IntervalArray must be entirely contained within domain")

    # check that IntervalArray is fully merged, or merge it if necessary
    merged = self.merge()
    # build complement intervals
    starts = np.insert(merged.stops, 0, domain.start)
    stops = np.append(merged.starts, domain.stop)
    newvalues = np.vstack([starts, stops]).T
    # remove intervals with zero length
    lengths = newvalues[:, 1] - newvalues[:, 0]
    newvalues = newvalues[lengths > 0]
    complement = copy.copy(self)
    complement._data = newvalues

    if domain.n_intervals > 1:
        return complement[domain]
    try:
        complement._data[0, 0] = np.max((complement._data[0, 0], domain.start))
        complement._data[-1, -1] = np.min((complement._data[-1, -1], domain.stop))
    except IndexError:  # complement is empty
        return type(self)(empty=True)
    return complement

copy()

(IntervalArray) Returns a copy of the current interval array.

Source code in nelpy/core/_intervalarray.py
653
654
655
656
def copy(self):
    """(IntervalArray) Returns a copy of the current interval array."""
    newcopy = copy.deepcopy(self)
    return newcopy

expand(amount, direction='both')

Expands interval by the given amount.

Parameters:

Name Type Description Default
amount float

Amount (in base units) to expand each interval.

required
direction str

Can be 'both', 'start', or 'stop'. This specifies which direction to resize interval.

'both'

Returns:

Name Type Description
expanded_intervals IntervalArray
Source code in nelpy/core/_intervalarray.py
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
def expand(self, amount, direction="both"):
    """Expands interval by the given amount.
    Parameters
    ----------
    amount : float
        Amount (in base units) to expand each interval.
    direction : str
        Can be 'both', 'start', or 'stop'. This specifies
        which direction to resize interval.
    Returns
    -------
    expanded_intervals : nelpy.IntervalArray
    """
    if direction == "both":
        resize_starts = self.data[:, 0] - amount
        resize_stops = self.data[:, 1] + amount
    elif direction == "start":
        resize_starts = self.data[:, 0] - amount
        resize_stops = self.data[:, 1]
    elif direction == "stop":
        resize_starts = self.data[:, 0]
        resize_stops = self.data[:, 1] + amount
    else:
        raise ValueError("direction must be 'both', 'start', or 'stop'")

    newintervalarray = copy.copy(self)

    newintervalarray._data = np.hstack(
        (resize_starts[..., np.newaxis], resize_stops[..., np.newaxis])
    )

    return newintervalarray

intersect(interval, *, boundaries=True)

Returns intersection (overlap) between current IntervalArray (self) and other interval array ('interval').

Source code in nelpy/core/_intervalarray.py
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
def intersect(self, interval, *, boundaries=True):
    """Returns intersection (overlap) between current IntervalArray (self) and
    other interval array ('interval').
    """

    if self.isempty or interval.isempty:
        logging.warning("interval intersection is empty")
        return type(self)(empty=True)

    new_intervals = []

    # Extract starts and stops and convert to np.array of float64 (for numba)
    interval_starts_a = np.array(self.starts, dtype=np.float64)
    interval_stops_a = np.array(self.stops, dtype=np.float64)
    if interval.data.ndim == 1:
        interval_starts_b = np.array([interval.data[0]], dtype=np.float64)
        interval_stops_b = np.array([interval.data[1]], dtype=np.float64)
    else:
        interval_starts_b = np.array(interval.data[:, 0], dtype=np.float64)
        interval_stops_b = np.array(interval.data[:, 1], dtype=np.float64)

    new_starts, new_stops = interval_intersect(
        interval_starts_a,
        interval_stops_a,
        interval_starts_b,
        interval_stops_b,
        boundaries,
    )

    for start, stop in zip(new_starts, new_stops):
        new_intervals.append([start, stop])

    # convert to np.array of float64
    new_intervals = np.array(new_intervals, dtype=np.float64)

    out = type(self)(new_intervals)
    out._domain = self.domain
    return out

join(interval, meta=None)

Combines [and merges] two sets of intervals. Intervals can have different sampling rates.

Parameters:

Name Type Description Default
interval IntervalArray
required
meta dict

New meta data dictionary describing the joined intervals.

None

Returns:

Name Type Description
joined_intervals IntervalArray
Source code in nelpy/core/_intervalarray.py
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
def join(self, interval, meta=None):
    """Combines [and merges] two sets of intervals. Intervals can have
    different sampling rates.

    Parameters
    ----------
    interval : nelpy.IntervalArray
    meta : dict, optional
        New meta data dictionary describing the joined intervals.

    Returns
    -------
    joined_intervals : nelpy.IntervalArray
    """

    if self.isempty:
        return interval
    if interval.isempty:
        return self

    newintervalarray = copy.copy(self)

    join_starts = np.concatenate((self.data[:, 0], interval.data[:, 0]))
    join_stops = np.concatenate((self.data[:, 1], interval.data[:, 1]))

    newintervalarray._data = np.hstack(
        (join_starts[..., np.newaxis], join_stops[..., np.newaxis])
    )
    if not newintervalarray.issorted:
        newintervalarray._sort()
    # if not newintervalarray.ismerged:
    #     newintervalarray = newintervalarray.merge()
    return newintervalarray

merge(*, gap=0.0, overlap=0.0)

Merge intervals that are close or overlapping.

if gap == 0 and overlap == 0: [a, b) U [b, c) = [a, c) if gap == None and overlap > 0: [a, b) U [b, c) = [a, b) U [b, c) [a, b + overlap) U [b, c) = [a, c) [a, b) U [b - overlap, c) = [a, c) if gap > 0 and overlap == None: [a, b) U [b, c) = [a, c) [a, b) U [b + gap, c) = [a, c) [a, b - gap) U [b, c) = [a, c)

WARNING! Algorithm only works on SORTED intervals.

Parameters:

Name Type Description Default
gap float

Amount (in base units) to consider intervals close enough to merge. Defaults to 0.0 (no gap).

0.0

Returns:

Name Type Description
merged_intervals IntervalArray
Source code in nelpy/core/_intervalarray.py
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
def merge(self, *, gap=0.0, overlap=0.0):
    """Merge intervals that are close or overlapping.

    if gap == 0 and overlap == 0:
        [a, b) U [b, c) = [a, c)
    if gap == None and overlap > 0:
        [a, b) U [b, c) = [a, b) U [b, c)
        [a, b + overlap) U [b, c) = [a, c)
        [a, b) U [b - overlap, c) = [a, c)
    if gap > 0 and overlap == None:
        [a, b) U [b, c) = [a, c)
        [a, b) U [b + gap, c) = [a, c)
        [a, b - gap) U [b, c) = [a, c)

    WARNING! Algorithm only works on SORTED intervals.

    Parameters
    ----------
    gap : float, optional
        Amount (in base units) to consider intervals close enough to merge.
        Defaults to 0.0 (no gap).
    Returns
    -------
    merged_intervals : nelpy.IntervalArray
    """

    if gap < 0:
        raise ValueError("gap cannot be negative")
    if overlap < 0:
        raise ValueError("overlap cannot be negative")

    if self.isempty:
        return self

    if (self.ismerged) and (gap == 0.0):
        # already merged
        return self

    newintervalarray = copy.copy(self)

    if not newintervalarray.issorted:
        newintervalarray._sort()

    overlap_ = overlap

    while not newintervalarray._ismerged(overlap=overlap) or gap > 0:
        stops = newintervalarray.stops[:-1] + gap
        starts = newintervalarray.starts[1:] + overlap_
        to_merge = (stops - starts) >= 0

        new_starts = [newintervalarray.starts[0]]
        new_stops = []

        next_stop = newintervalarray.stops[0]
        for i in range(newintervalarray.data.shape[0] - 1):
            this_stop = newintervalarray.stops[i]
            next_stop = max(next_stop, this_stop)
            if not to_merge[i]:
                new_stops.append(next_stop)
                new_starts.append(newintervalarray.starts[i + 1])

        new_stops.append(max(newintervalarray.stops[-1], next_stop))

        new_starts = np.array(new_starts)
        new_stops = np.array(new_stops)

        newintervalarray._data = np.vstack([new_starts, new_stops]).T

        # after one pass, all the gap offsets have been added, and
        # then we just need to keep merging...
        gap = 0.0
        overlap_ = 0.0

    return newintervalarray

partition(*, ds=None, n_intervals=None)

Returns an IntervalArray that has been partitioned.

Parameters:

Name Type Description Default
ds float

Maximum length, for each interval.

None
n_points int

Number of intervals. If ds is None and n_intervals is None, then default is to use n_intervals = 100

required

Returns:

Name Type Description
out IntervalArray

IntervalArray that has been partitioned.

Notes

Irrespective of whether 'ds' or 'n_intervals' are used, the exact underlying support is propagated, and the first and last points of the supports are always included, even if this would cause n_points or ds to be violated.

Source code in nelpy/core/_intervalarray.py
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
@keyword_equivalence(this_or_that={"n_intervals": "n_epochs"})
def partition(self, *, ds=None, n_intervals=None):
    """Returns an IntervalArray that has been partitioned.

    Parameters
    ----------
    ds : float, optional
        Maximum length, for each interval.
    n_points : int, optional
        Number of intervals. If ds is None and n_intervals is None, then
        default is to use n_intervals = 100

    Returns
    -------
    out : IntervalArray
        IntervalArray that has been partitioned.

    Notes
    -----
    Irrespective of whether 'ds' or 'n_intervals' are used, the exact
    underlying support is propagated, and the first and last points
    of the supports are always included, even if this would cause
    n_points or ds to be violated.
    """

    if self.isempty:
        raise ValueError("cannot parition an empty object in a meaningful way!")

    if ds is not None and n_intervals is not None:
        raise ValueError("ds and n_intervals cannot be used together")

    if n_intervals is not None:
        assert float(n_intervals).is_integer(), (
            "n_intervals must be a positive integer!"
        )
        assert n_intervals > 1, "n_intervals must be a positive integer > 1"
        # determine ds from number of desired points:
        ds = self.length / n_intervals

    if ds is None:
        # neither n_intervals nor ds was specified, so assume defaults:
        n_intervals = 100
        ds = self.length / n_intervals

    # build list of points at which to esplit the IntervalArray
    new_starts = []
    new_stops = []
    for start, stop in self.data:
        newxvals = utils.frange(start, stop, step=ds).tolist()
        # newxvals = np.arange(start, stop, step=ds).tolist()
        if newxvals[-1] + float_info.epsilon < stop:
            newxvals.append(stop)
        newxvals = np.asanyarray(newxvals)
        new_starts.extend(newxvals[:-1])
        new_stops.extend(newxvals[1:])

    # now make a new interval array:
    out = copy.copy(self)
    out._data = np.hstack(
        [
            np.array(new_starts)[..., np.newaxis],
            np.array(new_stops)[..., np.newaxis],
        ]
    )
    return out

remove_duplicates(inplace=False)

Remove duplicate intervals.

Source code in nelpy/core/_intervalarray.py
347
348
349
def remove_duplicates(self, inplace=False):
    """Remove duplicate intervals."""
    raise NotImplementedError

shrink(amount, direction='both')

Shrinks interval by the given amount.

Parameters:

Name Type Description Default
amount float

Amount (in base units) to shrink each interval.

required
direction str

Can be 'both', 'start', or 'stop'. This specifies which direction to resize interval.

'both'

Returns:

Name Type Description
shrinked_intervals IntervalArray
Source code in nelpy/core/_intervalarray.py
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
def shrink(self, amount, direction="both"):
    """Shrinks interval by the given amount.
    Parameters
    ----------
    amount : float
        Amount (in base units) to shrink each interval.
    direction : str
        Can be 'both', 'start', or 'stop'. This specifies
        which direction to resize interval.
    Returns
    -------
    shrinked_intervals : nelpy.IntervalArray
    """
    both_limit = min(self.lengths / 2)
    if amount > both_limit and direction == "both":
        raise ValueError("shrink amount too large")

    single_limit = min(self.lengths)
    if amount > single_limit and direction != "both":
        raise ValueError("shrink amount too large")

    return self.expand(-amount, direction)

SpaceArray

Bases: IntervalArray

IntervalArray containing spatial intervals (in centimeters).

This class extends IntervalArray to specifically handle space-based intervals, such as linear or 2D spatial regions. It provides a formatter for displaying spatial lengths and can be used for spatial segmentation in behavioral or neural data analysis.

Parameters:

Name Type Description Default
data array

If shape (n_intervals, 1) or (n_intervals,), the start position for each interval (which then requires a length to be specified). If shape (n_intervals, 2), the start and stop positions for each interval. Defaults to None, creating an empty SpaceArray.

required
length np.array, float, or None

The length of the interval (in base units, centimeters). If a float, the same length is assumed for every interval. Only used if data is a 1D array of start positions.

required
meta dict

Metadata associated with the spatial intervals.

required
empty bool

If True, an empty SpaceArray is returned, ignoring data and length. Defaults to False.

required
domain IntervalArray

The domain within which the spatial intervals are defined. If None, it defaults to an infinite domain.

required
label str

A descriptive label for the space array.

required

Attributes:

Name Type Description
data array

The start and stop positions for each interval, with shape (n_intervals, 2).

n_intervals int

The number of spatial intervals in the array.

lengths array

The length of each spatial interval (in centimeters).

formatter PrettySpace

The formatter used for displaying spatial lengths.

base_unit str

The base unit of the intervals, which is 'cm' for SpaceArray.

Notes

This class inherits all methods and properties from IntervalArray. It is intended for use with spatial data, such as segmenting a linear track or defining regions of interest in a behavioral arena.

Examples:

>>> import numpy as np
>>> from nelpy.core import SpaceArray
>>> # Create a SpaceArray from start and stop positions
>>> regions = SpaceArray(data=np.array([[0, 50], [100, 150]]))
>>> print(regions)
<SpaceArray at 0x...: 2 intervals> of length 100 cm
>>> # Create a SpaceArray from start positions and a common length
>>> starts = np.array([0, 100])
>>> length = 25.0
>>> regions_with_length = SpaceArray(data=starts, length=length)
>>> print(regions_with_length)
<SpaceArray at 0x...: 2 intervals> of length 50 cm
>>> # Accessing attributes
>>> print(f"Number of regions: {regions.n_intervals}")
Number of regions: 2
>>> print(f"Lengths: {regions.lengths}")
Lengths: [50 50]
Source code in nelpy/core/_intervalarray.py
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
class SpaceArray(IntervalArray):
    """
    IntervalArray containing spatial intervals (in centimeters).

    This class extends `IntervalArray` to specifically handle space-based
    intervals, such as linear or 2D spatial regions. It provides a formatter
    for displaying spatial lengths and can be used for spatial segmentation
    in behavioral or neural data analysis.

    Parameters
    ----------
    data : np.array, optional
        If shape (n_intervals, 1) or (n_intervals,), the start position for each
        interval (which then requires a `length` to be specified).
        If shape (n_intervals, 2), the start and stop positions for each interval.
        Defaults to None, creating an empty `SpaceArray`.
    length : np.array, float, or None, optional
        The length of the interval (in base units, centimeters). If a float,
        the same length is assumed for every interval. Only used if `data`
        is a 1D array of start positions.
    meta : dict, optional
        Metadata associated with the spatial intervals.
    empty : bool, optional
        If True, an empty `SpaceArray` is returned, ignoring `data` and `length`.
        Defaults to False.
    domain : IntervalArray, optional
        The domain within which the spatial intervals are defined. If None, it defaults
        to an infinite domain.
    label : str, optional
        A descriptive label for the space array.

    Attributes
    ----------
    data : np.array
        The start and stop positions for each interval, with shape (n_intervals, 2).
    n_intervals : int
        The number of spatial intervals in the array.
    lengths : np.array
        The length of each spatial interval (in centimeters).
    formatter : formatters.PrettySpace
        The formatter used for displaying spatial lengths.
    base_unit : str
        The base unit of the intervals, which is 'cm' for SpaceArray.

    Notes
    -----
    This class inherits all methods and properties from `IntervalArray`.
    It is intended for use with spatial data, such as segmenting a linear track
    or defining regions of interest in a behavioral arena.

    Examples
    --------
    >>> import numpy as np
    >>> from nelpy.core import SpaceArray

    >>> # Create a SpaceArray from start and stop positions
    >>> regions = SpaceArray(data=np.array([[0, 50], [100, 150]]))
    >>> print(regions)
    <SpaceArray at 0x...: 2 intervals> of length 100 cm

    >>> # Create a SpaceArray from start positions and a common length
    >>> starts = np.array([0, 100])
    >>> length = 25.0
    >>> regions_with_length = SpaceArray(data=starts, length=length)
    >>> print(regions_with_length)
    <SpaceArray at 0x...: 2 intervals> of length 50 cm

    >>> # Accessing attributes
    >>> print(f"Number of regions: {regions.n_intervals}")
    Number of regions: 2
    >>> print(f"Lengths: {regions.lengths}")
    Lengths: [50 50]
    """

    __aliases__ = {}

    def __init__(self, *args, **kwargs):
        # add class-specific aliases to existing aliases:
        self.__aliases__ = {**super().__aliases__, **self.__aliases__}
        super().__init__(*args, **kwargs)

        self.formatter = formatters.PrettySpace
        self.base_unit = self.formatter.base_unit